Антиголоморфная функция

Антиголоморфные функции (также называемые антианалитическими) — семейство функций, тесно связанных с голоморфными функциями.

Определение

Функция , определённая на открытом подмножестве комплексной плоскости, называется антиголоморфной, если её производная по существует во всех точках этого множества. Это равносильно условию

которым можно придать вид, аналогичный условиям Коши — Римана:

где

Функция, зависящая одновременно от и , не является ни голоморфной, ни антиголоморфной.

Свойства

  • голоморфна в тогда и только тогда, когда антиголоморфна в .
  • функция антиголоморфна тогда и только тогда, когда её можно разложить по степеням в окрестности каждой точки её области определения.
  • голоморфна в тогда и только тогда, когда антиголоморфна в .
  • если функция одновременно голоморфна и антиголоморфна, то она постоянна на любой связной компоненте её области определения.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.