Эквихордный центр

Эквихордный центр — точка внутри плоской кривой, такая, что все хорды, проходящие через неё, равны. Кривые, имеющие эквихордный центр, называются эквихордными.

Эквихордная кривая и её эквихордный центр.

Примеры

Эквихордными кривыми являются

Свойства

  • Любая выпуклая кривая имеет не более одного эквихордного центра.
    • То, что выпуклая кривая не может иметь трёх центров, было доказано Фудживарой в 1916 году; он же сформулировал задачу о том, что двух тоже быть не может. Задача была независимо сформулирована Вильгельмом Бляшке, Вильгельмом Ротом и Роландом Виценбёком в 1917 году и решена Мареком Рычликом в 1997-м. Его доказательство довольно сложное, оно занимает 72 страницы и использует комплексный анализ и алгебраическую геометрию.

Литература

  • W. Blaschke, W. Rothe, and R. Weitztenböck. Aufgabe 552. Arch. Math. Phys., 27:82, 1917
  • M. Fujiwara. Über die Mittelkurve zweier geschlossenen konvexen Curven in Bezug auf einen Punkt. Tôhoku Math J., 10:99–103, 1916
  • Marek R. Rychlik (1997), "A complete solution to the equichordal point problem of Fujiwara, Blaschke, Rothe and Weitzenböck", Inventiones Mathematicae 129 (1): 141–212
  • Steven G. Krantz (1997), Techniques of Problem Solving, American Mathematical Society,
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.