Порядок интегрирования
В математическом анализе изменение порядка интегрирования — это методология, которая преобразует повторные интегралы (или кратные интегралы с использованием теоремы Фубини) функций в другие, более простые интегралы путем изменения порядка, в котором выполняются интегрирования. В некоторых случаях порядок интеграции может быть обоснованно изменен; в других — нет.
Постановка задачи
Задача для исследования — вычисление интеграла формы
где D — некоторая двумерная область в плоскости xy. Для некоторых функций f возможно явное интегрирование, но там, где это не так, интеграл иногда можно привести к более простой форме, изменив порядок интегрирования. Сложность этого обмена заключается в определении изменения описания области D.
Метод также применим и к другим кратным интегралам.[1][2]
Иногда, даже если полная оценка затруднена или, возможно, требует численного интегрирования, двойной интеграл может быть сведен к единственному интегрированию, как показано ниже. Сведение к единственному интегрированию делает численную оценку намного проще и эффективнее.
Отношение к интегрированию по частям

Рассмотрим повторный интеграл
- ,
который мы напишем, используя префиксную нотацию:
- .
В этом выражении второй интеграл вычисляется первым по y, а x остается постоянным — полоса шириной dx интегрируется первой по направлению y (полоса шириной dx в направлении x интегрируется в отношении к переменной y вдоль направления y), складывая бесконечное количество прямоугольников шириной dy вдоль оси y. Это формирует трехмерный срез шириной dx вдоль оси x, от y = a до y = x вдоль оси y и в направлении z = f (x, y). Стоит обратить внимание, что если толщина dx бесконечно мала, x изменяется бесконечно мало только на срезе. Мы можем считать, что x — константа.[3] Это интегрирование показано на рисунке 1, но оно неудобно, особенно когда функцию h(y) интегрировать нелегко. Интеграл можно свести к единственному интегрированию, изменив порядок интегрирования, как показано на правой панели рисунка. Чтобы выполнить этот обмен переменными, полоса ширины dy сначала интегрируется от линии x = y до предела x = z, а затем результат интегрируется от y = a до y = z, в результате чего получается:
Этот результат можно рассматривать как пример формулы для интегрирования по частям, как указано ниже:[4]
Замена:
Что дает результат.
Интеграл в смысле главного значения
Для применения к интегралам в смысле главного значения см. Уиттакер и Ватсон,[5] Гахова,[6] Лу,[7] Цвиллингера.[8] См. также обсуждение преобразования Пуанкаре-Бертрана у Оболашвили.[9] Пример, когда порядок интеграции не может быть изменен, дал Канвал:[10]
в то время как:
Вторая форма вычисляется с использованием метода неопределённых коэффициентов и вычисления с использованием формулы Сохоцкого-Племеля:[11]
Обозначение указывает главное значение Коши. См. Канвал.[10]
Основные теоремы
Обсуждение базиса для изменения порядка интегрирования можно найти в книге «Анализ Фурье» Т. В. Кёрнера.[12] Он вводит свое обсуждение с примером, в котором перестановка интегрирования приводит к двум различным ответам, поскольку условия теоремы II ниже не выполняются. Вот пример:
Две основные теоремы, определяющие допустимость обмена, цитируются ниже Чаудри и Зубайр:[13]
Теорема I:
Пусть f(x, y) — непрерывная функция постоянного знака, определенная для a ≤ x < ∞, c ≤ y < ∞, и пусть интегралы и рассматриваются как функции соответствующего параметра, соответственно непрерывны при c ≤ y < ∞, a ≤ x < ∞. Тогда, если хотя бы один из повторных интегралов и сходится, другой интеграл также сходится и их значения совпадают.
Теорема II:
Пусть f(x, y) непрерывные функции для a ≤ x < ∞, c ≤ y < ∞, и пусть интегралы и сходятся равномерно на каждом конечном интервале c ≤ y < C и на каждом конечном интервале a ≤ x < A. Тогда, если хотя бы один из повторных интегралов и сходится, повторные интегралы и также сходятся и их значения равны.
Наиболее важная теорема прикладного характера цитируется Проттером и Морри:[14]
Предположим, что F это область, заданная где p и q непрерывны и p(x) ≤ q(x) для a ≤ x ≤ b. Предположим, что f(x, y) непрерывно на F. Тогда {{}} Соответствующий результат верен, если замкнутая область F имеет представление где r(y) ≤ s(y) для c ≤ y ≤ d. В таком случае,
Другими словами, оба повторных интеграла, если их можно вычислить, равны двойному интегралу и, следовательно, равны друг другу.
См. также
Примечания
- Seán Dineen. Multivariate Calculus and Geometry. — Springer, 2001. — P. 162. — ISBN 1-85233-472-X.
- Richard Courant & Fritz John. Introduction to Calculus and Analysis: Vol. II/1, II/2. Classics in mathematics : [англ.]. — Springer, 2000. — P. 897. — ISBN 3-540-66569-2.
- Double Integrals (англ.). Department of Mathematics, Oregon State University (1996).
- The Штрих « ′ » обозначает производную в обозначениях Лагранжа..
- Edmund Taylor Whittaker. A Course of Modern Analysis: an introduction to the general theory of infinite processes and of analytic functions, with an account of the principal transcendental functions : [англ.] / Edmund Taylor Whittaker, George Neville Watson. — 4th ed., repr. — Cambridge University Press, 1927. — P. §4.51, p. 75. — ISBN 0-521-58807-3.
- F. D. Gakhov. Boundary Value Problems : [англ.]. — Courier Dover Publications, 1990. — P. 46. — ISBN 0-486-66275-6.
- Jian-Ke Lu. Boundary Value Problems for Analytic Functions : [англ.]. — Singapore : World Scientific, 1993. — P. 44. — ISBN 981-02-1020-5.
- Daniel Zwillinger. Handbook of integration : [англ.]. — AK Peters Ltd., 1992. — P. 61. — ISBN 0-86720-293-9.
- Elena Irodionovna Obolashvili. Higher order partial differential equations in Clifford analysis: effective solutions to problems : [англ.]. — Birkhäuser, 2003. — P. 101. — ISBN 0-8176-4286-2.
- Ram P. Kanwal. Linear Integral Equations: theory and technique : [англ.]. — 2nd. — Boston : Birkhäuser, 1996. — P. 194. — ISBN 0-8176-3940-3.
- Обсуждение формулы Сохоцкого-Племеля см., например, Joseph A. Cima, Alec L. Matheson & William T. Ross. The Cauchy Transform. — American Mathematical Society, 2006. — P. 56. — ISBN 0-8218-3871-7. или Rainer Kress. Linear integral equations : [англ.]. — 2nd. — Springer, 1999. — P. Theorem 7.6, p. 101. — ISBN 0-387-98700-2.
- Thomas William Körner. Fourier Analysis : [англ.]. — Cambridge University Press, 1988. — P. Chapters 47 & 48. — ISBN 0-521-38991-7.
- M. Aslam Chaudhry & Syed M. Zubair. On a Class of Incomplete Gamma Functions with Applications : [англ.]. — CRC Press, 2001. — P. Appendix C. — ISBN 1-58488-143-7.
- Murray H. Protter & Charles B. Morrey, Jr. Intermediate Calculus : [англ.]. — Springer, 1985. — P. 307. — ISBN 0-387-96058-9.
Ссылки
- Paul’s Online Math Notes: Calculus III (англ.)
- Good 3D images showing the computation of «Double Integrals» using iterated integrals, the Department of Mathematics at Oregon State University. (англ.)
- Ron Miech’s UCLA Calculus Problems Архивная копия от 16 августа 2016 на Wayback Machine Более сложные примеры изменения порядка интеграции (см. задачи 33, 35, 37, 39, 41 & 43) (англ.)
- Duane Nykamp’s University of Minnesota website (англ.)